
§2. The Interaction of Atoms in Crystal (see textbook [3]).

2.1 Some basic ideas about interatomic interactions.

The fact that under certain conditions atoms can form stable molecules and crystals proves 
that forces of attraction can act between them, being compensated at distances of the order of 

10-8 cm by forces of repulsion. Almost in 
every case it appears more convenient to 
operate  not  with  forces  but  with  the 
potential  energy  of  interatomic 
interaction U(R), which we assume to be 
dependent  only  on  the  distance  R 
between the atoms (for covalent bonds it 
is  additionally  necessary  to  take  into 
account  the  so-called  angles  between 
bonds).  The  curves  (1) and  (2) in 
Figure 1 depict possible cases of interac-
tion between two atoms, one of which is 
placed  in  the  origin  O  (this  atom  is 
unmovable), and the other atom  A,  can 
move along  the  horizontal  R axis 

(connecting atoms). Since the potential energy is determined to within a constant term, we can 
always put  U (R→∞)=0 . The force acting on atom A is F⃗=— ∇̂ U ( R) . Hence, often  the forces 
of attraction act at those points where  dU/dR>0 (F  is anti parallel to  R),  and the forces of 
repulsion where  dU/dR < 0 (F is parallel to  R).  It may be seen from Figure 1 that curve (1) 
corresponds to the case where the atoms repulse each other at all distances  R  (this option is 
implemented for two hydrogen atoms chemically bonded by  electrons with parallel spins. It is 
clear that in this case the hydrogen molecule is unstable) , curve (2)  corresponds to a more 
complex case where the atoms attract each other at R > R0, and repulse each other at R < R0. The 

derivative (dU/dR)Ro = 0 at R = R0, i.e., F⃗=−
dU
dR

R⃗
R|

R=R0

=0 , and the system of two atoms is in a 

state of stable equilibrium. In this case, as we the shape of curve (2), (d2U/dR2)=β > 0. 
For small deflections of atom  A from the equilibrium position potential energy can be 

expanded to power series:
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to within terms of the third order of smallness. If, as is actually the case, the forces of repulsion 
close to the point R=R0 grow more rapidly with a decrease in R than the forces of attraction fall, 
then (d3 U / dR3)R0

=−2⋅γ<0  .  Denoting U(R0)   by  U0 and the deflection of  atom  A from its 
equilibrium position R - Ro by x, we obtain

Figure 1
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(1)

Figure 1.



U (x )−U 0=
1
2
β x2−1

3
γ x3+.. . . (2)

The force acting on atom A as it moves near its equilibrium position along the R axis is:

F=−dU
dR

=−β x+γ x2.

NB! if we take into account only the quadratic and cubic term in (2)
(3)

In real crystals, attractive forces are long-range (they decrease slowly with distance), and 
repulsions are short-range (they decrease very quickly with distance).

Often the non-linear terms can be omitted F=− dU
dR

=−γ x2  (because of their smallness) and 

we have a so-called quasi-elastic or linear (or harmonic) approximation for interatomic forces.  
This approximation is very convenient for describing the vibrational properties of crystals and 
molecules. In this case, vibrating atoms can be represented as a set of independent harmonic 
oscillators or independent quantums (quasiparticles)   of  vibrations  -  phonons (analogical  to 
photon - quantum of electromagnetic field).  

But important to emphasize that  the nonlinear terms in (3) play a decisive role in the  
nonlinear  phenomena,  for  example  in  such  as  heat  conduction  (in  the  harmonic  (linear) 
approximation, the crystal has infinitely high thermal conductivity).

From the point  of view of atomic theory,  atoms consist  of  a central  compact nucleus 
(positively charged) and a cloud of electrons (negatively charged) around it. This means that, to 
the zeroth approximation, the crystal looks like a system of charged particles interacting with 
purely electrostatic (Coulomb) forces. But from classical electrostatics it is a well-known fact 
that a system of charges cannot be stabilized only due to electrostatic interactions (despite the 
fact that  atoms  are electrostatically attracted and repelled). But the stability of crystal lattice 
means that we need additional nonelectrostatic forces to stabilize one.What is the nature of these 
additional forces? 

This non-classical repulsive force (stabilizing the crystal) can only be described within the 
framework of quantum mechanics. A simplified explanation for this is the following: if we have 
two atoms (for  example,  atoms  a and  b)  and we bring them closer  (reduce the interatomic 
distance), then this leads to the interpenetration of the electron clouds of atoms  a and b. The 
electrons of atom a can only occupy unoccupied energy levels in the energy spectrum of the 
electrons of atom  b (due to the Pauli exclusion principle).  But this is only possible with an 
increase in the energy of the electrons of atom  a (these electrons must jump to unoccupied 
higher energy levels) and for this it is necessary to perform additional external positive work to 
bring the atoms closer together and increase the energy of the system. Outwardly, this looks like 
the emergence of an effective force of interatomic repulsion. It is clear that this force is very 
short-range and strongly depends on the interatomic distance.

This means that additional effective interatomic repulsive forces appear, which are of a 
purely quantum nature (sometimes this repulsive force is called the Pauli repulsion). Further 
interpenetration of electron shells can lead to a complete restructuring of the electronic system of 
atoms, the unification of electrons and the creation of a common electron cloud of interacting 
atoms.



Possible consequences of overlapping electron shells of atoms are as follows (we only 
consider valence electrons responsible for creating chemical bonds):
1.)  In the case of  purely covalent crystals (eg Si)  we have fully united electron clouds of 
nearest atoms. The probability to find the valence electron near nearest atoms covalently bonded 
is equal.
2.) In the case of  purely ionic crystals (for example, CsCl), the only valence electron Cs is 
located on the outer shell of the Cl atom (localized on it). The probability of finding this electron 
moving around the Cs atom is equal to zero. Еlectrons are completely localized only near their  
atoms.

It  is  clear  that  there are many intermediate variants  (between purely ionic and purely 
covalent crystals).  It depends on the  sharing of valence electrons between atoms. The degree of 
ionicity or covalency can be calculated  by any abinitio program. The basic idea of this type of  
calculation is very simple. The calculated total charge of ions (atoms) after combining them into 
a crystal should be compared with the number of electrons of the corresponding neutral atoms. 
The difference in these charges gives an idea of the degree of localization of electrons around 
ions and makes it possible to determine the type of chemical bond in the crystal.
3.)  In some cases, electrons can be very tightly bound to atoms and cannot move from one 
nearby atom to another (non-shared electrons). In this case, the atom can be polarized by the  
electric field of the nearest atoms. This polarization results in very weak attractive forces (van  
der Waals forces) in molecular crystals. For example, in crystal Ar, atoms are attracted by very 
weak polarization forces (depending on the interatomic distance as 1/r7) and repelled by non-
classical Pauli forces (depending on the  distance as 1/r13).
4.) In metals, valence electrons are not associated with specific atoms. In this case a common 
electron cloud is created in the crystal and we have a set of point positive metal ions (without 
external electrons) located inside a common electron cloud (like the raisin inside a cupcake)

2.2 Repulsion forces (a little deeper consideration)

A consistent  theory of  atomic (ionic)  interaction should be based on a quantum mechanical  
treatment of the motion of their electrons. The atomic nuclei can be presumed to remain at rest  

because of their great mass (the adiabatic approximation). 
In this case the total energy of the electrons depends on 
the  position  of  the  nuclei  as  on  parameters.  When  the 
distance between the atoms is varied, the total energy of 
the electrons, together with the Coulomb repulsion of the 
nuclei,  plays  the  part  of  the  potential  energy  of  inter 
atomic interaction. In some cases it  is possible to get a 
rough  idea  about  the  atomic  interaction  from  more 
elementary considerations based on a statistical analysis 
of the behavior of the atomic electrons.

Consider from this point of view the nature of the repulsion forces acting between 
the atoms (ions).  Except in the trivial case of the Coulomb interaction between ions of like  
charge, which makes itself felt at great distances between them, the repulsion between atoms 
(ions) at short distances is the result of mutual penetration of their electron shells. This repulsion 
is due mainly to the rise in the kinetic energy of the atomic electrons on account of Pauli’s  
principle.

Figure 2



To establish the nature of those forces we shall consider the electrons of the atoms (ions) 
as a degenerate Fermi gas at the absolute zero temperature. A simple calculation shows that the 
density of the kinetic energy of the electrons (kinetic energy per cubic centimeter) is E(k) = (35/3 

π4/37ħ2/10m)  n5/s,  where  n  is  the  electron  concentration  (at  a  specified  point),  ħ - Planck’s 
constant, and m the electron mass. As a zero approximation, we shall presume that the densities 
of electrons  na and  nb in free atoms (ions)  a and  b (Figure 2) do not change as the result of 
mutual penetration of their electron shells. This assumption corresponds to the use in quantum 
mechanical calculations of unperturbed wave functions. In this case the variation of the kinetic  
energy density in the region of overlapping electron shells (shaded area in Fig. 2) is

Δ E(k )=35/3π 4 /3

10 m
[(na+nb)

5/3−na
5 /3−nb

5 /3] . (4)

It may easily be seen that the effect of the overlapping of electron shells of atoms a and b 
is to increase the kinetic energy of the electrons in the system, i. e., to establish repulsive forces  
(the greater the smaller the distance between a and  b).  We should add to them the repulsive 
forces of a purely Coulomb origin between the atomic nuclei  a and b,  which appear when the 
nucleus of one atom penetrates the atomic shell of the other. A more detailed study shows that  
the inclusion of exchange effects into the statistical theory results in the appearance, as the result  
of  mutual  penetration,  of certain attractive forces which,  however,  are unable to change the 
qualitative  Fig.  2  picture  described  above.  The  quantum  mechanical  theory  of  interatomic 
repulsive forces yields for the potential energy an expression of the form A exp (- R/a), where A 
and a are positive constants.

2.3  Types of interatomic interactions (a deeper consideration)

For the formation of stable crystals, in addition to the repulsive forces between atoms 
(ions),  there  must  also  be  attractive  forces  acting  between  them (аtoms  are  located  at  the 
equilibrium points ). Usually four principal types of bonds in crystals are considered: (a) ionic or 
heteropolar, (b) covalent, (c) van der Waals or dispersion, and (d) metallic. It should be noted 
that in the majority of cases the bonds in crystals are of mixed character, therefore one often 
hears statements that a bond is covalent so many percent and ionic so many percent. When we 
speak of one type of bond, we mean that this type is prevalent.  There is a special parameters 
determining this fact - degree of ionicity r. For NaCl r=0.72 and for CaF r=0.92 it means that 
interatomic bonds in NaCl on 72% ionic and  on 28% covalent. For Si r≈0 , the electron shell of 
the nearest  atoms is completely shared between nearest  atoms and we have a pure covalent 
bonds.

The ionic bond in its purest form is realized in ionic crystals, for example, in alkali-halide 
compounds NaCl, KC1, CsCl. The interaction between the ions, in the first approximation, is 
considered as the interaction between point charges located at lattice sites. Since the ions of the  
first  coordination  group  are  always  charged  oppositely  to  the  central  ion,  the  Coulomb 
interaction of all the lattice ions results in some attraction, which provides for the stability of the 
lattice.

In a quantitative theory, because of the slow decrease of Coulomb forces with distance, we 
should take into account the interaction of the central ion with more distant ions of both signs.  
The next approximation takes into account the mutual polarization of the ions.



2.3.1 Covalent forces

The  covalent  bond  occurs  between  closely  spaced  (10-8 cm)  neutral  atoms  if  certain 
conditions are fulfilled. In its simplest form, the covalent bond is realized between two hydrogen 
atoms in a hydrogen molecule H2  (W. Heitler and F. London, 1927). The covalent bond cannot 
be  interpreted  in  terms  of  classical  physics.  Special  quantum  mechanical  features  in  the 
behaviour of a system of identical particles (electrons) are essential for the explanation of the 
covalent bond. Classical physics was quite powerless to explain the properties of the saturated 
covalent bond, for example, the inability of a hydrogen atom to become attached to more titan 
one other hydrogen atom. This property is characterized in chemistry by the concept of valency;  
it stems from the pairing of the electrons belonging to both atoms and the formation of a singlet  
state in which the electron spins are antiparallel (the curve of atomic  interaction for the triplet  
state in which the electron spins are parallel is of the form 1 in Figure 1, i.e., the atoms repulse 
each other at all distances).

The covalent bond may occur not only between two hydrogen atoms but between other 
atoms  possessing  electrons  capable  of  forming  pairs  with  opposite  spins.  For  instance,  the 
nitrogen atom N has two electrons in the Is-, two electrons in the 2s- and three electrons in the  
2p-states, i.e., it has an electron structure denoted by (1s)2 (2s)2 (2p)3. Spectroscopic data show 
that the spins of three electrons in the 2p-state are all parallel, i.e., there is no spin saturation, 
and, consequently, they are able to form three covalent bonds; hence, nitrogen is trivalent.

This is confirmed by experiment. Thus, for example, when nitrogen reacts with hydrogen, 
NH3 is produced. The diatomic nitrogen molecule N2 in which the atoms are bonded by three 
pairs of electrons with antiparallel  spins is formed in the same way. The magnetic quantum 
numbers of the three 2p electrons in the nitrogen atom are m = + 1, —1,0, and the corresponding 
wave functions are of the form  ψ+1=xf (r ) , ψ−1= yf (r )  and ψ0=zf (r ) , i.e., the electron clouds of 
the three valence electrons are elongated in three mutually orthogonal directions x, у and z. The 
gain in energy accompanying the formation of a covalent bond depends to a great degree on the 
overlapping of the wave functions of the electrons forming the appropriate pair with antiparallel 
spins. Thus, it may be reasoned that the hydrogen atoms in an NH3 molecule will be arranged in 
three mutually perpendicular directions with respect to the nitrogen atom (directed valencies). 
Experiment confirms that the NH3 molecule, indeed, is of the shape of a pyramid with the HNH 

angle close to 90° (109°, to be precise). A somewhat greater 
angle between the directed valencies in the NH3  molecule can 
be explained by the mutual repulsion of the hydrogen atoms.

The electron structure of the carbon atom C is (1s)2 (2s)2 

(2p)2. Since the spins in the s-states are saturated (antiparallel), 
the carbon atom should be bivalent. However, this conclusion 
is in contradiction with the data obtained in organic chemistry, 
according  to  which  the  valency  of  carbon  is  four.  A more 
scrupulous  theoretical  and  experimental  investigation  of  the 
problem shows that the carbon atom takes part in the reactions 
not in its ground state but in an excited state: (1s)2 (2s)1 (2p)3. 
In this case the spins of all four electrons are not saturated (the Figure 3



2s electron has no partner, and the spins of the 2p electrons are parallel) and can participate in  
the formation of a covalent bonds. 
Question: What happens if we reverse this picture and assume that attractive forces are short-
range and repulsive forces are long-range? 

The electron structure of the carbon atom C is (1s)2 (2s)2 (2p)2. Since the spins in the s-
states are saturated (antiparallel), the carbon atom should be bivalent. orces are long-range. What 
would the elastic properties and stability of such hypothetical  crystals  look like?onds in the 
electron state,  which is  a superposition of one 2s- and three 2p-states.  The coefficients (the 
weights) of each of those states in the linear combination and the directions of the four valence 
bonds  are  determined  by  the  condition  that  the  free  energy  of  the  molecule  be  minimal. 
Mathematical analysis, which we are not in a position to carry out here, shows the directions of  
the valence bonds to coincide with the 01, 02, 03, and 04 directions in a tetrahedron (Figure 3), 
and we know those directions to be 109,5°. Experiment shows that the methane molecule CH4 

does,  indeed,  have  such  a  tetrahedral  structure.  The  directed  four  valency  of  carbon  atoms 
manifests itself in the formation of the diamond crystal, in which every carbon atom is located in 
the center of a tetrahedron formed by four other carbon atoms. The silicon (Si) atom has four 
electrons in its M-shell in the (3s)2 (3p)2-states, and, because the spins in its K- and L-shells are 
saturated,  is  expected to behave in a similar  way to the carbon atom. The properties of the 
germanium (Ge) atom with four electrons in its N-shell in the (3s)2 (4p)2- states, of the tin (Sn) 
atom with four electrons in its O-shell in the (5s)2 (5p)2-st at es and of the lead (Pb) atom with 
four electrons in its P-shell in the (6s)2(6p)2-states are similar. Actually, silicon, germanium and 
grey tin all crystallize in the diamond-type lattice and belong to typical covalent crystals. As for  
normal (white) tin and lead, the covalent nature of atomic bonding in them does not make itself 
felt, because it is suppressed by the metallic properties of the material (see below). 

Experimental studies in recent years have proved the chemical compounds of the  AIIIBV 

type,  i.e.,  of  the  elements  of  groups  III  and  V of  the  Periodic  Table,  to  possess  numerous 
properties  (crystal  lattice,  electron  band  structure)  typical  for  the  elements  of  Group  IV, 
germanium and silicon. InSb and GaAs belong to compounds of this type. Indium has three 
electrons in its O-shell in the (5s)2 (5p)3 states, and antimony five electrons in the (5s)2 (5p)3-st at 
es. Hence, just as is the case with Ge or Si, there are four electrons in the s-state and four in the 
p-state.  If one of the  p electrons of Sb partly goes over to In, a covalent bond can be formed 
similar to that formed in Si and Ge crystals. The same is true of the GaAs compound. Of course, 
the bond InSb and GaAs is not purely covalent, being partly ionic.

2.3.2 Van-der-Waals (polarization) forces

The covalent bond occurs only if certain conditions are fulfill. The electron structure of 
the carbon atom C is (1s)2 (2s)2 (2p)2. Since the spins in the s-states are saturated (antiparallel), 
the  carbon  atom should  be  bivalent.  ed.  First,  the  atoms  should  have  electrons  capable  of 
forming pairs with opposite spins (singlet state). Second, the spacing between the atoms should 
be small  enough for  the quantum mechanical  properties  based on the indistinguishability of 
identical particles constituting the system to make themselves manifest. Calculation shows the 
covalent  forces  to  decrease rapidly (exponentially)  with the distance.  At  larger  distances all 
atomic systems begin to display certain universal attraction forces. Those forces are termed van 
der Waals, or dispe(1s)2 (2s)2 (2p)2rsion, forces because, on the one hand, they are the cause of 
the divergence in beh(1s)2 (2s)2 (2p)2aviour of real gases from the ideal and, on the other, their 



parameters determine the dispersion of light by atoms. The van der Waals interaction provides 
bonding between particles in solids (argon, crypton, xenon and molecular crystals) in such cases 
where  for  some  reason  (closed  electron  shells,  saturated  valence  bonds  in  the  interacting 
molecules, etc.) there are no covalent, ionic, or metallic bonds (see below).

If the distance between the atomic systems R a (a is the atomic system’s dimension), the 
van der Waals (dispersion) forces can be calculated in the second approximation of the quantum 
mechanical perturbation theory. It can be demonstrated that the van der Waals interaction energy 
of two atomic systems is

U (R)=−W 0/R
6 (5)

Here R is the distance between the systems, and

W 0≈
3
2

J a J b

Ja+J b

α aα b (6)

where Ja, Jb are ionization potentials and aa, ab the polarizations of the atoms (molecules) a and 
b, respectively. The van der Waals forces, like the ionic forces, do not exhibit saturation effects  
characteristic for the covalent bond. In addition to the ionic, covalent, and van der Waals forces 
discussed above, there are also  dipole and  induced forces generated by the permanent electric 
dipole moment of some molecules. They may be of importance in the case of complex molecular 
lattices and shall not be considered here. The condition R >>a is not fulfilled in crystals in which 
the atoms or molecules are bonded by van der Waals forces (noble gases at low temperatures,  
molecular crystals) .

2.3.3 Metallic forces

Typical metals such as, for example, Li, Na, K, Cu, Ag, Fe, Ni, have some characteristic  
electrical,  optical  and  mechanical  properties.  They  all  feature  a  relatively  high  electrical 
conductivity  and  light  absorption  coefficient  and  high  plasticity  and  malleability.  These 
properties unambiguously point to the fact that the metals contain a large number (of the order of 
the number of atoms) of free electrons, i.e., electrons that can travel over macroscopic distances 
in the crystal already in weak external electric fields. The simplest model of a metal, proposed  
by Paul Drude, is made up of positively charged ions located at the sites of a crystal lattice and 
of  an  ideal  gas  of  “free  electrons”  moving  between  the  ions.  Despite  all  the  changes  and 
complexities introduced into the modern electron theory of metals (which we shall in part touch 
on below), such a straightforward model has not lost its importance; we need only take into 
account that the ideal gas of free electrons is strongly degenerate at all practically attainable 
temperatures of a metal.

As was first demonstrated by Ya. I. Frenkel (we do not consider subsequent perfections of 
his idea to be essential), the forces of cohesion in a metal crystal can be explained on the basis of  
the original simple free electron model . Frenkel considers the total bonding energy in a metal as  
consisting of two parts: the negative energy of Coulomb interaction between the free electrons 
and the positively charged ions (it is proportional to 1/a, where a is the lattice parameter) and the 
positive kinetic energy of the degenerate gas of “free” electrons (it is proportional to n2/3~ 1/a2, 
where n is the free electron concentration).

The total bonding energy will obviously have a minimum value for some value of a shown 
by simple calculation to be of the order of 10-8 cm.



Some characteristic properties of different materials.
Type of crystal Example Band energy(kcal/mol) Properties

Ionic NaCl, CsCl, RbBr 150-200 Infraraed  absorbtion,  dielectric 
for  low  temperature  and  ionic 
conductor for high.

Covalent Ge, C, Si 200-300 High  hardeness,  low 
conductivity  for  low 
temperature

Metal Na, Fe, Cu 20-100 High  electrical  and  thermal 
conductivity

Molecular crystals Ar, CH4 2-3 Low melting and boiling points. 
High compressibility.

Crystals with 
hydrogen bonds

H2O, HF ~10 Tends to polymerisation. A little 
more  stable  than  molecular 
crystal.

2.3.4 An example of calculating the binding energy in ionic and metallic crystals.

2.3.4.1 Ionic crystals 
In ionic crystals, atoms can be viewed as a set of point charges. For example, in CsCl, the 

Cs and Cl ions have a non closed electron shell. In process of creation of ionic  chemical bond a  
single valence electron from the outer shell of Cs migrates to the Cl atom, and as a result we 
obtain Cs and Cl ions with completely filled electron shells. Electrons in an ionic crystal are 
completely localized and are in the valence band. To transfer an electron to the conducting zone 
(to tear it away from atom Cl), it is necessary to expend a lot of energy, more than 8 eV. That is  
why ionic crystals are dielectrics. The interaction energy for ion i and k can be equal to:

Ei , k=±
Z i Zk e2

4 πϵ0 r i , k

 + 
b

r i ,k
m (7)

The first member is associated with classical Coulomb interaction. Due to the fact that in ionic  
crystals the minimum distance between ions with opposite charge signs is less than between ions 
with the same charge sign, this term describes the forces of interionic attraction. Second term is 
related  to  repulsion  forces  and  associated  to  overlap  of  electron  shells  of  ions  and  Pauli 
exclusion principle. In (7) Z-dimensionless charges of ions, b-unknown parameter, r-distance 
between ions, m-must be determined.
The potential energy of ion with number i:

Ei=±∑
k

(
Z i Zk e2

4 πϵ0 ri , k

+ b
ri ,k

m )=−
αM e2

4 πϵ0 R
+ A

Rm (8)

Here  A=∑
k

b

qi , k
m

 and  αM=Zi∑
k

Zk

q i ,k

 -  Madelung constant.   When calculating the Madelung 

constant,  a  problem arises  related  to  the  very  slow convergence  of  this  sum.  Therefore,  to 
calculate this constant,  it  is  necessary to use the special  mathematical  (Ewald) method. For 
NaCl  αM=1,7476, CsCl  αM=1,7627, ZnS  αM=1,638.



The total internal energy can be calculated by multiplication of (8) on N – number of 
atoms.

U=N (−
α M e2

4π ϵ 0 R
+ A

Rm )  later we replace  α M→αM /4π ϵ 0 (9)

For T=0 atoms are located in equilibrium positions this means that dU
dR|

R=a

=0 . Calculation of 

derivative allow to calculate A=
αM e2

m
⋅am−1  and  substit Ei=±∑

k

(
Z i Zk e2

4π ϵ 0 ri ,k

+ b
r i ,k

m )=−
α M e2

4π ϵ 0 R
+ A

Rm

ution one to (9) U=−
N αM e2

a
(1− 1

m
) . The compressibility of crystal can be calculated  by the 

following:
1
k
= 1

V
d2 U
dV 2 (10)

For NaCl crystal V=2Na3 then for  compressibility:

k= 18 a4

(m−Ne2α M)
,. (11)

Using compressibility (taken from experiment) for NaCl gives for m=9,4. This is a fairly correct 
value and means that the overlapping of the shells leads to a very rapid increase in repulsive 
forces. 

For  practical  measurement  of  bonding  energy  the Born–Haber  cycle can  be  used 
(https://en.wikipedia.org/wiki/Born%E2%80%93Haber_cycle).

2.3.4.2 Metals
A similar calculation can be carried out for  metals (this is a very rough approach). In 

metals we have a set of positive (repulsive) ions located within a cloud of quasi-free electrons.  
Give an explanation from the point of view of chemical bond theory. Repulsion of electrons 
must be excluded from consideration (in metals they form a cloud of independently moving 
particles). To calculate the internal energy of metal at zero temperature, it is necessary to take  
into  account  the  electrostatic  interaction  (electrostatic  repulsion)  of  positive  ions,  strongly 
screened by the negative electron cloud, and the kinetic energy of quasi-free electrons. 

Potential  energy  can  be  calculated  in  a  similar  way to  an  ionic  crystal.  But  in  these 
calculations,  the  gas  of  free  electrons  can  be  replaced  by  a  set  of  effective  negative  point  
charges. The corresponding formula is as follows: 

U pot=−
αM

 * e2

4πϵ0 R
 ,here αM

 * -effective Madelung constant and R -interionic distance (12)

The equation for  kinetic energy  of free electrons we take from lecture 5.1.1:

Ekin=
35 /3 π1/3 ℏ2n5/3

10 m
, here  n-electrons concentration =

A

R3
 and A ~1 constant (13)

It is important to emphasize that the kinetic energy (13) of quasi-free electrons in metals at zero 
temperature cannot be omitted due to the Pauli principle. This energy can never be zero and must 

https://en.wikipedia.org/wiki/Born%E2%80%93Haber_cycle


be  taken  into  account.  To  find  the  equilibrium  interatomic  distance  we  have  to  find  thee 

minimum of total energy by this way: 
d (Ekin+U pot )

dR
=0 .

For equilibrium distance we get:  a=
5,7 A2/3 aB

αM
 *   her aB -Bohr radius. 

It is important that it is a very approximate approach  gives a realistic value of the interatomic  
distance in metals.

Questions:

1. What kind of experiments can be used to prove the existence of attractive and repulsive forces  
acting between atoms? This experiment can be done using only your hands.

2. In real crystals, attractive forces (acting between atoms) are long-range (they decrease slowly 
with distance), and repulsion forces are short-range (they change very quickly with distance). 
What happens if we reverse this picture and assume that attractive forces are short-range and 
repulsive  forces  are  long-range.  What  would  the  elastic  properties  and  stability  of  such 
hypothetical crystals look like?

3. What is the Pauli repulsive force? How can its existence be explained and why this force is so 
important for crystal stability?

4. Why are metals are more elastic compared to covalent and ionic crystals (quite brittle)? Give 
an explanation from the point of view of chemical bond theory.

5. Why is the carbon atom tetravalent even though there are only two electrons in the 2p valence  
orbital?

6.  What  is  Madelung's  constant?  What  can  it  be  used  for?  What  causes  the  difficulty  in  
calculating the electrostatic potential energy   of interaction between ions in an ionic crystal ?

7. Why are ionic crystals good insulators but metals vice versa?

8. Why in eq. 7 parameter m should be sufficiently large?

9. Can you describe the appearance of very weak attractive forces between atoms (associated 
with polarization of atoms) in molecular crystals?

10. How the Pauli exclusion principle and the fact that electrons are Fermi particles should be 
used in calculating the total internal energy of metals at zero temperature.


